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ABSTRACT

Multi-agent learning is a crucial method to control or find
solutions for systems, in which more than one entity needs
to be adaptive. In today’s interconnected world, such sys-
tems are ubiquitous in many domains, including auctions in
economics, swarm robotics in computer science, and politics
in social sciences. Multi-agent learning is inherently more
complex than single-agent learning and has a relatively thin
theoretical framework supporting it. Recently, multi-agent
learning dynamics have been linked to evolutionary game
theory, allowing the interpretation of learning as an evolu-
tion of competing policies in the mind of the learning agents.
The dynamical system from evolutionary game theory that
has been linked to Q-learning predicts the expected behav-
ior of the learning agents. Closer analysis however allows
for two interesting observations: the predicted behavior is
not always the same as the actual behavior, and in case of
deviation, the predicted behavior is more desirable. This
discrepancy is elucidated in this article, and based on these
new insights Frequency Adjusted Q- (FAQ-) learning is pro-
posed. This variation of Q-learning perfectly adheres to the
predictions of the evolutionary model for an arbitrarily large
part of the policy space. In addition to the theoretical dis-
cussion, experiments in the three classes of two-agent two-
action games illustrate the superiority of FAQ-learning.
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1. INTRODUCTION

Today’s world shows numerous examples of interconnected
systems, ranging from the ubiquitous internet to high tech

Cite as: Frequency Adjusted Multi-agent Q-learning, M. Kaisers and K.
Tuyls, Proc. of 9th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2010), van der Hoek, Kaminka,
Lespérance, Luck and Sen (eds.), May, 10-14, 2010, Toronto, Canada, pp.
309-315

Copyright (©) 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

309

multi-robot applications. The assumption of a system being
actually isolated from any other actor can rarely be upheld.
Hence, problems from a variety of domains are naturally
modeled as multi-agent systems to account for their inherent
structure and complexity. Their complexity however makes
those systems hard to understand and even harder to pre-
dict. Multi-agent learning has been acknowledged to be a
valuable tool to control or find solutions to these systems [15,
17]. Significant progress has been facilitated in various ap-
plications, ranging from auctions and swarm robotics to pre-
dicting political decisions [6, 11, 14, 16].

Learning in multi-agent environments is significantly more
complex than single-agent learning, as the optimal behavior
to learn depends on other agents’ policies. These policies
are in turn changed according to the other agents’ learning
strategies, which makes the first agents learning goal a mov-
ing target. All agents face this same situation, while chasing
their own dynamic learning goal they indirectly influence
and move the learning goals of other agents. This makes
predicting the behavior of learning algorithms in multi-agent
systems difficult. In such non-stationary environments, the
Markov property does not hold, which makes all proofs of
convergence to optimal policies from single-agent learning
that are based on that assumption inapplicable. This lim-
its the theoretical backbone available for multi-agent learn-
ing. Furthermore, the agents may not only be situated in a
non-stationary environment but may also need to deal with
incomplete information and communication limits.

More recently, evolutionary game theory has been linked
to reinforcement learning and provides useful insights into
the learning dynamics [3, 7, 21, 22]. In particular, this link
has provided insights into the dynamics and convergence
properties of current state of the art multi-agent reinforce-
ment learning algorithms such as Q-learning. It allows to
study the resilience of equilibria, visualize the basins of at-
traction and fine tune parameters. Experiments comparing
Q-learning to its evolutionary model reveal two interesting
facts: one, the learning traces partly deviate significantly
from the predicted dynamics, and two, in case of deviation
the prediction is more desirable than the actual learning
behavior. This paper is the first to examine this issue in
depth for multi-agent Q-learning, giving a detailed elabo-
ration of the causes for the occasional mismatch. Subse-
quently, Frequency Adjusted Q- (FAQ-) learning is proposed
as a variation of QQ-learning that complies with the predic-
tion of the evolutionary model derived in [21, 22]. Although
FAQ-learning can be applied to multi-state problems as in-
troduced, this article evaluates it in single-state games for



the sake of clarity and coherence with related work [2, 3,
22]. Furthermore, the selected games suffice to show the
improved behavior and the applicability of the evolutionary
game theoretic framework.

In essence, Q-learning fails to comply with its prediction
because actions are updated at different frequencies. The
newly proposed variation compensates the difference in fre-
quencies by modulating the learning step size for each action
separately. Thereby, initialization dependencies are removed
and convergence progresses through more rational policy
trajectories, i.e., in expectation never moving away from
dominant actions. It has been shown that modulating the
learning rate can improve learning performance, e.g., Bowl-
ing et al. have modulated the learning rate anti-proportional
to the success of the current strategy [5]. The here presented
approach is different in that it considers the learning rate of
each action separately, compensating the fact that an ac-
tion which is selected more often receives more updates and
thereby has its estimation updated more quickly.

The remainder of this article is structured as follows: Sec-
tion 2 introduces basic concepts from reinforcement learning
and evolutionary game theory. Using these preliminaries,
Section 3 discusses the exact relation between Q-learning
and its evolutionary model, which leads to the derivation of
FAQ-learning. An empirical evaluation of the anomalies and
their alleviation in FAQ-learning are presented in Section 4.
Finally, Section 5 concludes the article with a discussion of
the new algorithm and its position in the evolutionary game
theoretic framework.

2. BACKGROUND

This section introduces the main concepts from reinforce-
ment learning and evolutionary game theory that this article
is based on. In particular, Q-learning and its relation to evo-
lutionary game theory are discussed. The general concept
of replicator dynamics is explained and the specific replica-
tor dynamics model that has been linked to Q-learning is
provided. The latter are analyzed in-depth in Section 3.

2.1 Q-learning

Q-learning was invented to maximize discounted payoffs
in a multi-state environment [23]. It was originally stud-
ied in single-agent learning, where the learning process is
markovian from the agent’s point of view, i.e., the policy
change only depends on the current and known states of
the world. This article discusses single-state multi-agent Q-
learning, which has an established but imperfect relation to
evolutionary game theory. In multi-agent learning, the en-
vironment is not markovian from an agents point of view, as
the optimal policy to learn changes due to the adaptation of
other agents. Consequently, proofs from single-agent learn-
ing may not hold or may require stronger assumptions [4].
The discussion of single-state games is the first step to estab-
lish a new framework for the analysis of multi-agent learning.

By definition, the Q-learner repeatedly interacts with its
environment, performing action ¢ at time ¢, and receiving
reward 7;(t) in return. It maintains an estimation Q;(t)
of the expected discounted reward for each action i. This
estimation is iteratively updated according to the following
equation, known as the Q-learning update rule, where «
denotes the learning rate and - is the discount factor:

Qult+1) = Qult) + o () + yargmax@y(t) - Q:(0))

310

Let k be the number of actions, and let x; denote the prob-
ability of selecting action 4, such that Zle r; = 1. Further-
more, let 2(Q) = (z1,...,zx) be a function that associates
any set of Q-values with a policy. The most prominent exam-
ples of such policy generation schemes are the e-greedy and
the Boltzmann exploration scheme [18]. This article exclu-
sively discusses Q-learning with the Boltzmann exploration
scheme. Boltzmann exploration is defined by the following
function, mapping Q-values to policies, and balancing ex-
ploration and exploitation with a temperature parameter 7:

—1
TTQ,

10,
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J

zi(Q,7) = (1)

The parameter 7 lends its interpretation as temperature
from the domain of physics. High temperatures lead to
stochasticity and random exploration, selecting all actions
almost equally likely regardless of their Q-values. In con-
trast to this, low temperatures lead to high exploitation of
the Q-values, selecting the action with the highest Q-value
with probability close to one. Intermediate values prefer
actions proportionally to their relative competitiveness. In
many applications, the temperature parameter is decreased
over time, allowing initially high exploration and eventual
exploitation of the knowledge encoded in the Q-values. An
examination of the Q-learning dynamics under time depen-
dent temperatures is given in [12]. Within the scope of this
article, the temperature is kept constant for analytical sim-
plicity and coherence with the derivations in [21, 22].

2.2 Evolutionary game theory

Evolutionary game theory takes a rather descriptive per-
spective, replacing hyper-rationality from classical game the-
ory by the concept of natural selection from biology [13]. It
studies the population development of individuals belong-
ing to one of several species. The two central concepts of
evolutionary game theory are the replicator dynamics and
evolutionary stable strategies [19]. The replicator dynam-
ics presented in the next subsection describe the evolution-
ary change in the population. They are a set of differential
equations that are derived from biological operators such as
selection, mutation and cross-over. The evolutionary sta-
ble strategies describe the possible asymptotic behavior of
the population. However, their examination is beyond the
scope of this article. For a detailed discussion, we refer the
interested reader to [9, 10].

2.3 Replicator dynamics

The replicator dynamics from evolutionary game theory
formally define the population change over time. A popu-
lation comprises a set of individuals, where the species that
an individual can belong to relate to pure actions available
to a learner. The utility function r;(t) that assigns a reward
to the performed action can be interpreted as the Darwinian
fitness of each species 7. The distribution of the individuals
on the different strategies can be described by a probabil-
ity vector that is equivalent to a policy for one player, i.e.,
there is one population in every agent’s mind. The evolu-
tionary pressure by natural selection can be modeled by the
replicator equations. They assume this population to evolve
such that successful strategies with higher payoffs than av-
erage grow while less successful ones decay. These dynamics
are formally connected to reinforcement learning [3, 20, 21].



Let the policy of a player be represented by the probability
vector © = (x1,...,x%), where z; indicates the probability
to play action ¢, or the fraction of the population that be-
longs to species 7. The dot notation will be used to denote
differentiation over time, i.e. @; d;ti. The replicator dy-
namics that relate to the learning process of Cross Learning,
a simple learning automaton, are given by the following set

of differential equations [3]:

k
Ty = | Eri(t)] — Z z; E [r;(t)]

This is a one-population model. In order to describe a two-
population model relating to two-agent matrix games played
by Cross learners, let e; denote the " unit vector, and z and
y be policy vectors for a two-player matrix game, where the
utility functions are given by V¢ : E [r;(t)] = e; Ay and V¢t :
E[r;(t)] = xBe; for player one and two respectively. The
corresponding replicator dynamics are given by the following
set of differential equations:

j)i =T [eiAy — .%‘Ay]
Yi = y; [vBe; — xBy]

The change in the fraction playing action i is proportional to
the difference between the expected payoffs e; Ay and xBe;
of action ¢ against the mixing opponent, and the expected
payoff z Ay and xBy of the mixed strategies = and y against
each other. Hence, above average actions get stronger while
below average actions decay. The replicator dynamics main-
tain the probability distribution, thus 3, #; = 0. The exam-
ples used in this article are constraint to two actions, which
implies #1 = —&2 and §1 = —gy2. The policy space is com-
pletely described by the unit square (x1,y1), in which the
replicator dynamics can be plotted as arrows in the direction
of (&1,71).

The behavior of Cross learning, a simple policy iterator,
has been shown to converge to the replicator dynamics in
the infinitesimal time limit [3]. Based on these insights, an
analogical relation between Q-learning and an extension of
the replicator dynamics has been derived in [22], which the
following subsection elaborates.

2.4 Q-learning dynamics

In [22] the authors extended the work of Borgers et al.
of [3] to Q-learning. More precisely, they derived the dy-
namics of the Q-learning process, which yielded the follow-
ing system of differential equations, describing the learning
dynamics for a two-player stateless matrix game:

T; = T (T_l [e; Ay — zAy]

— log x; + Z x, log a:k>

* (2)
i = yja (Tl [xBe; —xBy] —logy; + Yy 1ogyz>
l

with z,y the policies, a the learning rate, 7 temperature
parameter, A, B the payoff matrices, and e; the i*" unit vec-
tor. The striking part of this result was that the equations
contain a selection part equal to replicator dynamics, and
a mutation part. For an elaborate discussion in terms of
selection and mutation operators we refer to [21, 22].

With this model, it now became possible to get insight
into the learning process, its traces, basins of attraction, and
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Figure 1: An example of a replicator dynamics plot,
showing the dynamics of the Battle of Sexes game.

stability of equilibria, by just examining the coupled system
of replicator equations and plotting its force and directional
fields. An example plot of the dynamics of the game Battle
of Sexes is given in Figure 1, the corresponding payoff table
can be found in Figure 3.

Borgers et al. observed that the actual learning traces of
Cross learning may deviate from the predicted behavior [3].
Similarly, we observed that the behavior of the Q-learning
process does not always match the derived Q-learning dy-
namics. While the correspondence between algorithm and
model improves under smaller learning rates in Cross learn-
ing, these deviations are systematic and non-negligible for
Q-learning. The next section analyzes and elucidates why
this is the case.

3. ANALYSIS

The evolutionary model defined by Equation 2 should pre-
dict the learning behavior of Q-learning accurately. How-
ever, significant deviations of the learning trajectories from
the model can be observed. Figure 2 shows an example of
such deviations in the Prisoners’ Dilemma game, for which
the payoff table is given in Figure 3. The remainder of this
section analyzes why these anomalies occur and how they
can be accounted for.
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Figure 2: An example of the discrepancy between
Q-learning and its evolutionary prediction in the
Prisoner’s Dilemma game. The arrows indicate the
expected policy change derived from the extended
replicator dynamics, and the solid lines show Q-
learning trajectories, obtained from running the al-
gorithm with a small learning rate.



3.1 Deriving the cause of discrepancies

When action a is selected, the Q-values are changed ac-

cording to AQ;(t) = Q:(t+ 1) — Q:i(¢):

AQi(t) {O‘ (“’(t) +yargmax Q;(t) — Qi(t)) if i=a

0 otherwise

The policy = determines the frequency with which each Q-
value is updated and influences the expected Q-value change.
The expected reward E [r;(t)] also depends on the environ-
ment and the other agents. The resulting expected Q-value
change incurred by the Q-learning update rule is given by:

BIAQu0] = wi - (B (0] + 7 argmax Q3(0) - (1))

T

The authors of [2, 8] independently arrived at the same ex-
pected change of Q-values. However, these sources explicitly
consider e-greedy exploration, which does not allow to de-
scribe the process as policy iteration.

Next, the continuous time limit of the Q-value change will
be derived, using the term T for notational convenience.
Taking the continuous time limit of a learning algorithm
is inspired by [3], which describes a policy learner with in-
finitesimal time steps and shows that the process of multi-
agent Cross-learning converges to the replicator dynamics
in the continuous time limit. In the learning algorithm, up-
dates proceed in discreet iterations of At = 1.

EQit+1) -~ Q)] = 1-a;-aT

The continuous time limit can be constructed by changing
the basis for time from 1 to § and then taking the limit of § to
zero. Let the learning rate as in the new frame of reference
be decomposed into a; = de, i.e., when time § passes, only
a proportional fraction of the update is incurred.

EQi(t+0) - Qi(t)] =6 ;- aT

Which in the continuous time limit 6 — 0, again using the
dot notation for differentiation to time, becomes:

B[0] =i o Bl O]+ yarmax ;) - Q.0

Due to the fact that in the infinitesimal time limit an infinite
number of updates is perceived, the expected change equals

the actual change in that limit, i.e., £ [Ql] = Q, Formally,
Ve > 0, however small, 36 > 0 : ¢ = kJ, with ¥ — oo and

E [d%} =F [dlgsl} = %E [d%} According to the law of

large numbers, the mean approaches the expected value for
dQ; | _ dQ; _ dQ;
R .

e

large sample sizes k. Hence, %E [

Gi=ai-a (E ro(0)] + v argmax Qs (1) ~ @-(t))

In the following, the link of the continuous time version of
Q-learning to an extension of the replicator dynamics is dis-
cussed.

A relation of Q-learning to evolutionary game theory was
derived in [21]. However, the derivation starts from the fol-
lowing assumption:

Qi=a (E [rs (V)] + v argmax Q; (¢) — Qi(t))
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This differs from the actual Ql by a factor of x;. This dis-
crepancy between the model and the update rule explains
observed anomalies and initialization dependencies. This
discrepancy can be resolved in two ways: one, deriving the
actual replicator dynamics of Q-learning, incorporating the
factor x;, or two, adapting the Q-learning update rule to fit
the model.

The derived evolutionary game theory model of [22] pre-
dicts more rational policy trajectories than Q-learning actu-
ally exhibits. For example, if two actions are over-estimated
by the current Q-values and the dominant action receives
more updates due to being selected more often, the domi-
nant action will loose it’s over-estimation more quickly and
Q-learning may policy-wise move away from this dominant
action. Such behavior is undesirable because the problem
of over- and under-estimation is prevalent in the applica-
tion of the algorithm. The Q-values need some initialization
which must not be based on knowledge of the rewards. This
leads to initial errors in the estimate. In practice, this is
overcome by sufficient initial exploration, but the amount of
exploration that suffices may differ from case to case and if
underestimated, i.e., if exploration is decreased prematurely,
the same problems of wrong estimates re-occur. Another
drawback of moving away from dominant actions is the de-
crease of expected reward for a period of time, which may
in some applications be worse than an almost monotonically
ascending expected reward with a slightly lower accumulated
payoff. This may be the case when dependent processes rely
on the profit that is generated from this game, e.g. humans
commonly prefer monotonically increasing income over tem-
porarily decreasing income, even if the cumulated reward is
lower [1]. In addition, the actual dynamics of Q-learning are
not independent of the Q-values and can therefore not be
sufficiently described in the policy space.

As a consequence, rather than deriving the actual repli-
cator dynamics for Q-learning, this article presents an alter-
native update rule for Q-learning, i.e., Frequency Adjusted
Q- (FAQ-) learning that perfectly fits the model for an arbi-
trarily large subspace of the policy space. In particular, the
update rule is adapted to compensate the frequency term x;
in the expected Q-value change.

3.2 Frequency Adjusted Q-learning

This subsection introduces Frequency Adjusted Q- (FAQ-)
learning, which is derived to inherit the more desirable game
theoretical behavior of the evolutionary game theory model
that was invented to describe Q-learning. FAQ-learning
is equivalent to Q-learning, except for the update rule for
which it uses the following adapted version:

Qut+1) — Qi) + ~a

T

(0 + angmax @3 ) - :) )

Using the same reasoning as in the previous section, the con-
tinuous time limit of this process converges to the following
equation:

@ = o Blr(o)] + rarsmax @y (0 - 00

This means that FAQ-learning matches the assumption made
in [21] precicely, while regular Q-learning differs by a factor
of x;. The experiments in Section 4 show how that trans-
lates to anomalies and differences between Q-learning and
its prediction, while an exact match of FAQ-learning and the



evolutionary game theoretical model can be observed. How-
ever, this update rule is only valid in the infinitesimal limit
of a, otherwise = may become larger than 1. This would
allow the Q—valueLs to escape the convex hull of experienced
rewards. That in turn breaks the learning algorithm. In fact,
a maximal learning step should be very small to yield rea-
sonable convergence behavior, i.e., :% << 1. Consequently,
this idealized version of FAQ-learning cannot be applied nu-
merically. We propose the following generalized model of
FAQ-learning with a new model parameter § € [0, 1):

Qu(t+1) = Qu(t)+min (£.1)

(0 + yargmax Q) — Q:() )

Let us inspect the properties of this update rule, considering
that the behavior changes at I% = 1, which is at z; = (.
For notational convenience, the time dependency is dropped
from x;(t), Qi(t), and r;(t) in the following equation:

B

x> B E[AQ:] = ;a(E [ri] + 7 argmax Qj — Qz‘)

x; < B: E[AQ;] = a(E [ri] —|—fyarg]maij — Qi)

If 8 = 1, this model degenerates to regular Q-learning, there-
fore this value is excluded from the allowed range of 8. If
0 < B < 1, the limit of & — 0 makes this model equivalent
to idealized FAQ-learning with a learning rate of af, i.e.,
the behavior converges to the replicator dynamics derived
in [21]. Numerical simulation needs to choose finitely small
a. In that case, the dynamics for z; > [ are equivalent
to idealized FAQ-learning with learning rate a3, while the
dynamics for z; < 8 equal those of regular Q-learning with
learning rate a. Hence, the maximal learning step is defined
by a and needs to be reasonably small, while the size of the
subspace that behaves like idealized FAQ-learning is con-
trolled by 3. For both parameters, smaller values are more
desirable regarding the path of convergence, but lead to an
increase in the required number of iterations. By choosing (3
arbitrarily small, the learner can be made to behave accord-
ing to the evolutionary model for an arbitrarily large part
of the policy space.

The examples given in this article will empirically evaluate
FAQ-learning with # = « to obtain a smooth convergence
to the true Q-values, while maintaining the correct update
behavior for a large part of the policy space.

4. EXPERIMENTS AND RESULTS

This section compares Q-learning and FAQ-learning tra-
jectories to their evolutionary game theoretic predictions.
For the sake of clarity, the empirical evaluation is restricted
to two-player two-action normal form games. This type of
games can be characterized by a payoff bi-matrix (A, B),
where for any joint action (i, j) the payoff to player one and
two are given by A;; and B;j; respectively. Figure 3 gives
the payoff matrices of three representative examples of this
class of games, corresponding to the selection in [21, 22]:
the Prisoners’ Dilemma (PD), the Battle of Sexes (BoS), and
Matching Pennies (MP). They represent the classes of games
with one pure Nash Equilibrium (PD), with one mixed and
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Figure 3: Reward matrices for Prisoners’ Dilemma
(left, Defect or Cooperate), Battle of Sexes (right,
Bach or Stravinski) and Matching Pennies (bottom,
Head or Tail).

two pure Nash Equilibria (BoS), and with one mixed Nash
Equilibrium (MP).

For Boltzmann action selection, policies do not uniquely
identify the Q-values they are generated from. Translation
of all Q-values by an equal amount does not alter the pol-
icy, which is solely dependent on the difference between the
Q-values. For example, the Q-value pair (0, 1) generates the
same policy as (1,2). The replicator dynamics describe the
policy change depending on the policy, while the learning
update rule incurs a policy change dependent on the policy
and the Q-values. In order to compare Q-learning and FAQ-
learning to the evolutionary prediction, learning trajectories
showing the update rule’s effect are given for several trans-
lations of initial Q-values. In particular, the initial Q-values
are centered around the minimum, mean or maximum possi-
ble Q-value, given the game’s reward space. The two spaces
are related according to the following equation for the min-
imum, and similarly for the other values:

- 1
min — Tmin = 77— T'min
Q ; g -
This relates to {0, 2%, 5} for the Prisoners’ Dilemma, {0, 1,2}
for Battle of Sexes and {—1,0,1} for Matching Pennies if
v = 0, and the tenfold if v = 0.9.

Figure 4 shows trajectories obtained from running the
learners with v = 0.9, @ = 10~° for Q-learning, and o = 3 =
1072 for FAQ-learning, with a fixed temperature 7 = 0.1.
The trajectories yield 200 thousand iterations in all but the
right two cases of the top row, which show 500 thousand
iterations.

While regular Q-learning shows significantly different learn-
ing behavior depending on the initialization, FAQ-learning
merely increases the noise for higher values in the initializa-
tion. The noise is caused by larger learning steps, as the
Q-value change includes a term —aQ;(t), which is clearly
proportional to the magnitude of the Q-values. Nonethe-
less, the expected direction of change remains unaffected in
FAQ-learning.

In comparison to the evolutionary prediction, the FAQ-
learning trajectories always follow the predicted expected
change, while Q-learning trajectories deviate from it de-
pending on the initialization. The behavior of Q-learning
and FAQ-learning are most similar to each other for the
mean reward initialization. However, tweaking the initial-
ization does not remove but only alleviates the deviations,
and knowing the exact reward space violates the assumption
of many applications. In addition, the Prisoners’ Dilemma
shows qualitatively significant differences even for the mean
initialization.
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Figure 4: Comparison of Q-learning to FAQ-learning with various Q-value initializations in the Prisoners’
Dilemma, the Battle of Sexes and Matching Pennies. The Q-values are initialized centered at the minimum
(left), mean (center) and maximum (right) possible Q-value given the reward space of the game.
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S. DISCUSSION AND CONCLUSIONS

The results have shown empirical confirmation of the match
between trajectories of the newly proposed FAQ-learning al-
gorithm and its evolutionary prediction. These results have
been found to be qualitatively insensitive to the values of
v and «, as long as « is reasonably small. Given the Q-
value space and a specific temperature 7, the most extreme
policy can be computed using the policy generating function
given in Equation 1. Hence, a temperature 7 can be selected
such that x; > B is guaranteed in FAQ-learning, and the
algorithm behaves according to ideal FAQ-learning. Using
analogous derivations as in Section 3.2, Frequency Adjusted
Sarsa (FAS) can be shown to behave equivalently in single-
state environments. The contributions of this article can be
summarized as follows: The deviation of Q-learning from
its evolutionary model has been analyzed and explained.
Based on the new insights, FAQ-learning was devised and it
is shown to comply with the evolutionary prediction for an
arbitrarily large part of the policy space.

Further experiments are required to verify the performance
gain in multi-state domains and real applications; the re-
lation between the learning speed ‘;‘3—? in FAQ- and « in
Q-learning is critical for the speed and quality of conver-
gence that is achieved and needs further investigation. Fu-
ture work will combine these insights with progress on the
methodology of analyzing multi-agent learning from the per-
spective of evolutionary game theory. Eventually, this will
contribute to a solidified theoretical framework for the un-
derstanding and prediction of multi-agent learning dynam-
ics.
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GRANT OF THE NETHERLANDS ORGANISATION FOR SCIENTIFIC RE-
SEARCH (NWO).
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